Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 255: 107034, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274504

RESUMO

Station RN33 on Mount Schauinsland near Freiburg, Germany, is part of the International Monitoring System monitoring radioxenon in air (131mXe, 133Xe, 133mXe, and 135Xe) for verification of the Comprehensive Nuclear Test Ban Treaty. Here, we present data from phase II testing of a new system, Xenon International at RN33, July 14th, 2021 to Jan 22nd, 2022, together with SPALAX data from the same time period. Radioxenon could be detected in 473 of 719 samples, among them many multiple isotope detections. Activity concentrations of spiked and selected environmental samples were verified by laboratory reanalysis. The sensitivity of Xenon International for radioxenons is up to one order of magnitude better for the metastable isotopes than that of the SPALAX, with a shorter sampling duration of 6 h.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Spalax , Animais , Poluentes Radioativos do Ar/análise , Alemanha , Isótopos/análise , Xenônio/análise , Radioisótopos de Xenônio/análise
2.
J Environ Radioact ; 247: 106853, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35276605

RESUMO

Three unusual radioactive isotopes of xenon-125Xe, 127Xe, and 129mXe-have been observed during testing of a new generation radioxenon measurement system at the manufacturing facility in Knoxville, Tennessee. These are possibly the first detections of these isotopes in environmental samples collected by automated radioxenon systems. Unfortunately, the new isotopes detected by the Xenon International sampler can interfere with quantification of the radioactive xenon isotopes used to monitor for nuclear explosions. Xenon International sampling data collected during February through September 2020 were combined with an atmospheric transport model to identify the possible release location. A source-location analyses using sample counts dominated by 125Xe strongly supports the conclusion that the release point is near (within 20 km) the sampler location. Wind patterns are not consistent with releases coming from more distant nuclear power plants. The High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory are located in the region of most likely source locations. The source-location analysis cannot rule out either facility as a release location, and some of the samples may contain a combination of releases from both facilities. The source-location results using 125Xe are not unexpected because Klingberg et al. (2013) previously published the production rate of radioactive xenon isotopes from neutron activation of stable xenon in the air at the HFIR. Up to 1012 Bq of 125Xe could be produced per operational day and other xenon isotopes would be produced in lesser quantities.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radioisótopos/análise , Xenônio/análise , Isótopos de Xenônio/análise , Radioisótopos de Xenônio/análise
3.
Appl Radiat Isot ; 126: 9-12, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28017500

RESUMO

Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50-1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. We present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.

4.
Appl Radiat Isot ; 126: 171-174, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28017502

RESUMO

Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H2O and present sensitivity results.

5.
Appl Radiat Isot ; 107: 187-190, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26516993

RESUMO

Age-dating groundwater and seawater using the (39)Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to (39)Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the (39)Ar/Ar ratio is sufficient to date water masses as old as 1000 years.

6.
Appl Opt ; 54(9): 2413-23, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968530

RESUMO

Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation. For reliable operation, the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low-background liquid scintillation counters, additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material present in the laboratory and within the instrument's construction materials. Low-background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting (LSC) in a low-background shield. The basic approach to achieve both good light collection and a low-background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high-sensitivity LSC system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...